\( \def\AA{{\bf Å}} \def\ii{{ 𝟙}} \def\bold#1{{\bf #1}} \)

Fragment Molecular Orbital Configuration Interaction Methodology for the Description of Correlated States in Extended Molecular Aggregates

Project of

Anurag Singh

Project

Symbolic-CI Software Development

WebSlides Files

Singlet Fission model for Trimer

WebSlides Files

SFast Software Development for Dimer

WebSlides Files

SFast , B-N doping and optimisation

WebSlides Files

Software Development for Fragment Molecular Orbital base Configuration Interaction

Branching Diagram approach to make configuration state function

Number of electrons 6
Select the final \(S\) (Spin) 0
Select the pathway of \(S\) for combination of electrons 0
Select the pathway of \(M\) (High Spin State) 0
Select final \(M\) 0

Press "D" to see animation

WaveFunction Construction

Wave Function Representation

The wave function with spin-only information is expressed as follows:

\( \vert \Psi^{S_{pathway}}_{(^{i}s)} \rangle = \sum^{M_{pathways}}_{k} CG_{k} \vert s_{1},m_{1} \rangle \otimes \dots \vert s_{n},m_{n} \rangle \)

Using creation operators, the wave function can be represented as:

\( \vert \Psi^{S_{pathway}}_{(^{i}s)} \rangle = \sum^{M_{pathways}}_{k} \sum_{k} CG_{k} C^{\dagger}_{\vert s,m\rangle_{j}} \dots \vert - \rangle \)

The Creation and annihilation operator is defined as: $$ a^{\dagger} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} $$

Creation operator for an electron in spatial orbtal \( \psi \)

\(\textbf{a}^{\dagger}_{\sigma \psi} = (\mathbf{s} \otimes ....\otimes \mathbf{s} \otimes a^{\dagger}_{\sigma } \otimes \unicode{x1D7D9}^{2} \otimes .... \otimes \unicode{x1D7D9}^{2})\psi. \)

\begin{equation} \begin{split} \left\langle\Psi_{m}\right|\hat{H}\left|\Psi_{n}\right\rangle = \sum_{i,j = 1}^{d}\sum_{s_{i},s_{j} = \uparrow,\downarrow}T_{ij}\left\langle\Psi_{m}\right|\textbf{a}_{i,s_{i}}^{\dagger}\textbf{a}_{j,s_{j}}\left|\Psi_{n}\right\rangle \\ + \frac{1}{2}\sum_{i,j,k,l = 1}^{d}\sum_{s_{i},s_{j},s_{k},s_{l} = \uparrow,\downarrow}V_{ijkl}\left\langle\Psi_{m}\right|\textbf{a}_{i,s_{i}}^{\dagger} \textbf{a}_{j,s_{j}}^{\dagger}\textbf{a}_{k,s_{k}} \textbf{a}_{l,s_{l}}\left|\Psi_{n}\right\rangle, \label{eq:coup} \end{split} \end{equation}

Singlet fission model for PDI trimer

A perylene diimide stack with three monomers (m, n, o) is considered.

HOMO and LUMO of each monomer are included.

Assuming singlet multiplicity, 19 diabatic states are constructed:

  • 1 ground state (GS)
  • 3 locally excited singlet states (LE)
  • 6 charge transfer states (CT)
  • 6 doubly excited mixed CT-triplet states
  • 3 correlated paired triplet states (1TT)

Example Wave Function

\begin{equation} | \text{S}_{1}\text{S}_{0}\text{S}_{0} \rangle = \substack{ \displaystyle{ - \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\uparrow} } l_{m_{\downarrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\uparrow}} h_{o_{\downarrow}} h_{n_{\uparrow} } h_{n_{\downarrow}}} $} \displaystyle{ + \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\downarrow} } l_{m_{\uparrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\uparrow}} h_{o_{\downarrow}} h_{n_{\uparrow} } h_{n_{\downarrow}}} $}\\ \displaystyle{ + \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\uparrow} } l_{m_{\downarrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\downarrow}} h_{o_{\uparrow}} h_{n_{\uparrow} } h_{n_{\downarrow}}} $} \displaystyle{ - \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\downarrow} } l_{m_{\uparrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\downarrow}} h_{o_{\uparrow}} h_{n_{\uparrow} } h_{n_{\downarrow}}} $}\\ \displaystyle{ + \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\uparrow} } l_{m_{\downarrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\uparrow}} h_{o_{\downarrow}} h_{n_{\downarrow} } h_{n_{\uparrow}}} $} \displaystyle{ - \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\downarrow} } l_{m_{\uparrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\uparrow}} h_{o_{\downarrow}} h_{n_{\downarrow} } h_{n_{\uparrow}}} $}\\ \displaystyle{ - \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\uparrow} } l_{m_{\downarrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\downarrow}} h_{o_{\uparrow}} h_{n_{\downarrow} } h_{n_{\uparrow}}} $} \displaystyle{ + \frac { 1 }{ \sqrt { 8}}} \colorbox{yellow}{$ h_{m_{\downarrow} } l_{m_{\uparrow} } $ } \colorbox{green}{$ \color{white}{ h_{o_{\downarrow}} h_{o_{\uparrow}} h_{n_{\downarrow} } h_{n_{\uparrow}}} $} } \label{eq:LE} \end{equation}
\begin{equation} | \text{TS}_{0}\text{T} \rangle = \substack{ \displaystyle{ - \frac { 1 }{ \sqrt { 6}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\uparrow}} h_{o_{\downarrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $} \displaystyle{ - \frac { 1 }{ \sqrt { 6}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\downarrow}} h_{o_{\uparrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $}\\ \displaystyle{ + \frac { 1 }{ \sqrt { 6}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\uparrow}} h_{o_{\downarrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $} \displaystyle{ + \frac { 1 }{ \sqrt { 6}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\downarrow}} h_{o_{\uparrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $}\\ \displaystyle{ + \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\downarrow}} h_{o_{\uparrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $} \displaystyle{ + \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\uparrow}} h_{o_{\uparrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $}\\ \displaystyle{ + \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\downarrow}} h_{o_{\downarrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $} \displaystyle{ + \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\uparrow}} h_{o_{\downarrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\uparrow}} h_{n_{\downarrow}}} $}\\ \displaystyle{ - \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\downarrow}} h_{o_{\uparrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $} \displaystyle{ - \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\uparrow}} h_{o_{\uparrow}} l_{o_{\downarrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $}\\ \displaystyle{ - \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\uparrow}} l_{m_{\downarrow}} h_{o_{\downarrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $} \displaystyle{ - \frac { 1 }{ \sqrt { 24}} } \colorbox{yellow}{ $ h_{m_{\downarrow}} l_{m_{\uparrow}} h_{o_{\downarrow}} l_{o_{\uparrow}} $ } \colorbox{green}{ $ \color{white}{ h_{n_{\downarrow}} h_{n_{\uparrow}}} $} } \label{eq:TST} \end{equation}

Couplings and Energies expressions

\begin{equation} \langle \text{TS}_{0}\text{T} \vert \hat{\text{T}} \vert \text{TS}_{0}\text{T} \rangle = 2\langle h_{n} | \hat{\text{h}} | h_{n} \rangle + \langle l_{m} | \hat{\text{h}} | l_{m} \rangle + \langle h_{m} | \hat{\text{h}} | h_{m} \rangle + \langle l_{o} | \hat{\text{h}} | l_{o} \rangle + \langle h_{o} | \hat{\text{h}} | h_{o} \rangle \label{eq:etst1} \end{equation} \begin{equation} \begin{split} \langle \text{TS}_{0}\text{T} \vert \hat{\text{G}} \vert \text{TS}_{0}\text{T} \rangle = & \colorbox{yellow}{$ + \frac{1}{2} (h_{m} h_{o} |h_{o} h_{m}) $ } \colorbox{yellow}{$ + \frac{1}{2} (h_{m} l_{o} |l_{o} h_{m}) $ }\\& \colorbox{yellow}{$ + \frac{1}{2} (h_{o} l_{m} |l_{m} h_{o}) $ } \colorbox{yellow}{$ + \frac{1}{2} (l_{m} l_{o} |l_{o} l_{m}) $ }\\& \colorbox{green}{$ \color{white}{+ (h_{m} h_{m} |h_{o} h_{o}) }$ } \colorbox{green}{$ \color{white}{+ (h_{m} h_{m} |l_{m} l_{m}) }$ }\\& \colorbox{green}{$ \color{white}{+ (h_{m} h_{m} |l_{o} l_{o}) }$ } \colorbox{green}{$ \color{white}{+ (h_{o} h_{o} |l_{m} l_{m}) }$ }\\& \colorbox{green}{$ \color{white}{+ (h_{o} h_{o} |l_{o} l_{o}) }$ } \colorbox{green}{$ \color{white}{+ (l_{m} l_{m} |l_{o} l_{o}) }$ }\\& \colorbox{orange}{$ + 2 (h_{n} h_{n} |h_{n} h_{n}) $ } \colorbox{orange}{$ + 2 (h_{m} h_{m} |h_{n} h_{n}) $ } \colorbox{orange}{$ + 2 (h_{o} h_{o} |h_{n} h_{n}) $ }\\& \colorbox{orange}{$ + 2 (h_{n} h_{n} |l_{m} l_{m}) $ } \colorbox{orange}{$ + 2 (h_{n} h_{n} |l_{o} l_{o}) $ }\\& \colorbox{pink}{$ - (h_{m} h_{n} |h_{n} h_{m}) $ } \colorbox{pink}{$ - (h_{m} l_{m} |l_{m} h_{m}) $ }\\& \colorbox{pink}{$ - (h_{o} h_{n} |h_{n} h_{o}) $ } \colorbox{pink}{$ - (h_{o} l_{o} |l_{o} h_{o}) $ }\\& \colorbox{pink}{$ - (h_{n} l_{m} |l_{m} h_{n}) $ } \colorbox{pink}{$ - (h_{n} l_{o} |l_{o} h_{n}) $ } \end{split} \label{eq:etst2} \end{equation}
\begin{equation} \langle \text{CAT} | \hat{\text{T}} | \text{S}_{0}\text{TT} \rangle = - \langle h_{m} | \hat{\text{h}} | h_{n} \rangle \label{eq:CAT_STT_1} \end{equation} \begin{equation} \begin{split} \langle \text{CAT} | \hat{\text{G}} | \text{S}_{0}\text{TT} \rangle = & \colorbox{yellow} { $ \frac{3}{2} (h_{m} h_{o} | h_{o} h_{n}) $} \colorbox{yellow} { $ +\frac{3}{2} (h_{m} l_{o} | l_{o} h_{n}) $}\\& \colorbox{green} {$ \color{white}{- (h_{m} h_{m} | h_{m} h_{n}) }$ } \colorbox{green} {$ \color{white}{- (h_{m} h_{n} | h_{n} h_{n}) }$ }\\& \colorbox{green} {$ \color{white}{- (h_{m} h_{n} | h_{o} h_{o}) }$ } \colorbox{green} {$ \color{white}{- (h_{m} h_{n} | l_{n} l_{n}) }$ } \colorbox{green} {$ \color{white}{- (h_{m} h_{n} | l_{o} l_{o}) }$ } \end{split} \label{eq:CAT_STT_2} \end{equation} \begin{equation} \langle \text{CAT} | \hat{\text{T}} | \text{TS}_{0}\text{T} \rangle = \langle l_{n} | \hat{\text{h}} | l_{m} \rangle \label{eq:CAT_TST_1} \end{equation} \begin{equation} \begin{split} \langle \text{CAT} | \hat{\text{G}} | \text{TS}_{0}\text{T} \rangle =& \colorbox{orange} { $ +2 (l_{m} l_{n} | h_{n} h_{n} ) $ }\\& \colorbox{yellow} { $ + \frac{1}{2} (l_{m} h_{o} | h_{o} l_{n} ) $ } \colorbox{yellow} { $ + \frac{1}{2} (l_{m} l_{o} | l_{o} l_{n} ) $ }\\& \colorbox{pink} { $ -(l_{m} h_{m} | h_{m} l_{n}) $ } \colorbox{pink} { $ -(l_{m} h_{n} | h_{n} l_{n}) $ }\\& \colorbox{green} { $ \color{white}{+ (l_{m} l_{n} | h_{m} h_{m} ) } $ } \colorbox{green} { $ \color{white}{+ (l_{m} l_{n} | h_{o} h_{o} ) } $ } \colorbox{green} { $ \color{white}{+ (l_{m} l_{n} | l_{o} l_{o} ) } $ } \end{split} \label{eq:CAT_TST_2} \end{equation}

incorporation of Core orbital Interaction

To incorporate the electron repulsion integrals (ERI) contribution of core electrons the electron repulsion interaction term (\(\text{G}_{core}\)) is determined by summing over specific core orbital indices in the expression involving the core density operator. The core density operator for the core orbitals is defined as: \begin{equation} \mathbf{\hat{D}}_{core} = 2 \mathbf{C}_{core} \mathbf{C}^{\dagger}_{core}, \label{eq:D_core} \end{equation} Thus, \begin{equation} \text{G}_{core} = \sum_{r,s } \mathbf{\hat{D}}_{core} [(pq|rs) - \frac{1}{2}(pr|sq)] \label{eq:V_core} \end{equation} The effective one-electron operator for active orbitals. \begin{equation} \hat{h}_{act} = \hat{h}^{AO} + \text{G}_{core}. \label{eq:h_act} \end{equation} \begin{equation} \langle \psi_{a} \vert \hat{h}^{MO} \vert \psi_{b} \rangle= \textbf{C}_{a}^{\dagger} \hat{h}_{\text{act}} \textbf{C}_{b} \label{eq:OneI} \end{equation} The ERI in the molecular orbital basis are calculated by transforming their counterparts in the atomic orbital (AO) basis: \begin{equation} ( \psi_{a} \psi_{b} \vert \psi_{c} \psi_{d} ) = \sum_{p}\sum_{q}\sum_{r}\sum_{s}C^{a}_{p}C^{b}_{q}C^{c}_{r}C^{d}_{s} (pq \vert rs) \label{eq:twoI} \end{equation}

Semi-Empirical AM1 Approximations

The implementation of \( T_{LE \rightarrow ^{1}TT} \) neglects additional two-electron contributions, and the following approximation was used:

\[ ^{Fock}T_{RP} = \sqrt{\frac{3}{2}}\left\vert \frac{( l_{A} | \mathbf{\hat{F}} | l_{B} ) ( l_{A} | \mathbf{\hat{F}} | h_{B} )}{\Delta E(\text{CA})} - \frac{( h_{A} | \mathbf{\hat{F}} | h_{B} ) ( h_{A} | \mathbf{\hat{F}} | l_{B} ) }{\Delta E(\text{AC})} \right\vert. \]

Then approximated by transitioning from Fock matrix elements to overlap matrix elements, represented as \(\langle \phi |\mathbf{\hat{F}}| \psi \rangle = \epsilon \langle \phi| \psi \rangle\), where \(\epsilon \) is constant. The obtained equation is: \begin{equation} ^{Overlap}T_{RP} = \sqrt{\frac{3}{2}}\left \vert\frac{\langle l_{A} | l_{B} \rangle \langle l_{A} | h_{B} \rangle}{\Delta E(\text{CA})} - \frac{\langle h_{A} | h_{B} \rangle \langle h_{A} | l_{B} \rangle }{\Delta E(\text{AC})}\right \vert. \end{equation}

Additionally, \(\Delta E(\text{CA})\) and \(\Delta E(\text{AC})\) are approximated as one for simplicity.

\begin{equation} T_{RP} = \left \vert \langle l_{A} | l_{B} \rangle \langle l_{A} | h_{B} \rangle - \langle h_{A} | h_{B} \rangle \langle h_{A} | l_{B} \rangle \right \vert. \end{equation}

Cofacially stacked perylene diimide (PDI) dimer molecules were analyzed.

The monomer geometry was optimized using the CAM-B3LYP functional, with an interplanar distance of \( \Delta Z = 3.41 \, \AA \).

The scan was conducted across spatial displacements \( \Delta X \): 0 to 4 \(\AA\), \( \Delta Y \): 0 to 4 \(\AA\), with a step size of 0.1 \(\AA\).

Semi-Empirical AM1 Approximations

PBI Diabatic Coupling

Benchmarking With Active Space Decomposition (ASD)

  • An ASD scan was performed using the RAS-CI/cc-pVDZ, employing a RAS(11,4,11)[1,1] configuration.
  • The ASD scan results are consistent with earlier studies by Mirjani et al. and Renaud et al.\(^{1,2}\)
  • Resemblance of Semi-Empirical scan to the ab-initio plot is excellent.
  • Non-Adiabatic Couplings

    By diagonalizing the diabatic Hamiltonian, the adiabatic states, denoted as \( |S^* \rangle \) and \( |TT^*\rangle \), are obtained.

    The singlet-fission rate is approximately proportional to the square of the first-order derivative coupling vector's magnitude.

    \[ \vec{\tau} = \langle S^* | \nabla | TT^*\rangle = \sum_{i=S_0S_1,S_1S_0,\ldots,TT} C^{\text{exciton}}_i \nabla C_i^{\text{triplet}} \] \[ \vert T_{RP} \vert^2_{\text{NAC}} = \frac{1}{2} \vert \langle {S^{\text{bright*}}} | \nabla | {TT^*} \rangle\vert^2 + \vert \langle {S^{\text{dark*}}} | \nabla | {TT^*} \rangle \vert^2 \]

    Shared features with scan of norm of non adiabatic coupling vector from Farag and Krylov

    • Used PySEQM for semi-empirical calculations.
    • PySEQM utilizes a PyTorch backend.
    • Automatic differentiation is employed for efficient gradient calculations.

    Autograd

    • Forward Mode:
      • Evaluates the computational graph during forward propagation.
      • Tracks operations and inputs for each variable.
    • Backward Mode:
      • Traverses the computational graph in reverse order during backpropagation.
      • Applies the chain rule to compute gradients efficiently.

    Functionality optimisation

    • The diabatic coupling \( T_{RP} \) is defined as: \( T_{RP} = \left \vert \langle l_{A} | l_{B} \rangle \langle l_{A} | h_{B} \rangle - \langle h_{A} | h_{B} \rangle \langle h_{A} | l_{B} \rangle \right \vert. \)

    • Functionality optimization using a custom objective function \( L(x) \).

    • The gradients for \( L(x) \) are computed automatically using an algorithmic differentiation framework, enabling efficient optimization.

    • The optimization minimizes the objective function \( L(x) \), which is expressed as: \( L(x) = E(x) - \omega \cdot \log(|T_{RP}|^2(x)). \)

    • The ground state energy component \( E(x) \) ensures that the molecular conformation is physically plausible

    Functionality optimisation

    • Searched for PBI dimer structures with high effective singlet fission coupling:
      • 500 optimizations conducted, followed by PCA to analyze resulting dimer structures.
      • Results grouped into 4 clusters based on structural characteristics:
        • Cluster 2:
          • Highest mean effective SF coupling.
          • Monomers have twist, stacking motif with translation in both the \( x \)- and \( y \)-directions, and rotation along the \( z \)-axis.
        • Cluster 3:
          • Exhibits curvature and strong translation along the \( x \)-axis.
        • Clusters 1 and 4:
          • Nearly planar structures.
          • Show rotation around the \( z \)-axis and relative translations of monomers in the \( x \)- and \( y \)-directions.
    Name \(2 E_{T_{1}} - E_{S_{1}}\) in eV
    PBI-C1\(_A\) -0.0682
    PBI-C1\(_B\) -0.0663
    PBI-C2\(_A\) -0.0795
    PBI-C2\(_B\) -0.0714
    Name \(2 E_{T_{1}} - E_{S_{1}}\) in eV
    PBI-C3\(_A\) 0.2993
    PBI-C3\(_B\) 0.3002
    PBI-C4\(_A\) -0.0676
    PBI-C4\(_B\) 0.2905
    PBI-Planar 0.3154

    Singlet Fission Study in B-N substituted perylene

    The study aimed to increase the singlet fission rate through doping.

    1. Substitution Strategy:
      • All possible substitutions were enumerated where two adjacent carbon atoms were replaced by boron-nitrogen (B-N).
      • The resulting molecules were labeled as perylene-(BN)n-i, with:
        • \( n \): The number of B-N substitutions.
        • \( i = 0, 1, 2, \ldots \): Enumeration of structural isomers.
    2. Generated Molecules:
      • \((BN)_1\)-substitution resulted in 13 unique molecules.
      • \((BN)_2\)-substitution resulted in 256 unique molecules.
  • Property Calculations:
    • Vertical singlet and triplet excitation energies were computed at the CASPT2 and TD-DFT levels of theory.
  • Methodology:
    • Searched slipped stacking geometries of molecular dimers to achieve higher SF rates.
      • Diabatic method.
      • Non-Adiabatic Coupling (NAC) method.
  • Best Isomer

    • \(S_1\) excitation energy range: \( 1.8~\text{eV} \leq E(S_1, \text{CASPT2}) \leq 3.0~\text{eV} \).

      This ensures the molecule absorbs in then region where the solar spectrum has high intensity.

    • \(T_1\) state energy constraint:

      \( 0.8~\text{eV} < E(T_1, \text{TD-DFT}) \) To ensure solar cell operation with a singlet fission layer.

    • Condition for singlet fission energetics:

      Singlet fission must be exoergic or at most slightly endoergic. \( -0.3~\text{eV} < \Delta E_{ST}(\text{CASPT2}), \Delta E_{ST}(\text{TD-DFT}) < 0.2~\text{eV} \) pass this test.

    • \(T_2\) state constraint:

      The \(T_2 > S_1\) state to exclude intersystem crossing as a competing loss channel with singlet fission. The requirement is \( \Delta E_{TT}(\text{CASPT2}), \Delta E_{TT}(\text{TD-DFT}) < -0.2~\text{eV} \).

    • Only one candidate, BN2-112, remains.
    • BN2-112 has desirable properties, including:
      • A Lewis structure without formal charges.
      • Moderate biradical character of \( y_0 = 0.06 \), compared to a range of \( y_0 = 0.01 \) to \( 0.66 \) for the full set of isomers.
      • An oscillator strength \( f(S_0 \to S_1) = 0.27 \), which is close to undoped perylene (\( 0.30 \)).